

Loviisa power plant – reliable and clean electricity production

Clean energy production and sustainability are at the core of Fortum's strategy. In 2022, the Loviisa power plant generated a total of 7.9 TWh (net) of carbon-free power, corresponding to more than ten per cent of the energy generation in Finland.

As a producer of clean energy, the Loviisa power plant and carbon-free nuclear power play a significant role in mitigating climate change. The greenhouse gas emissions over nuclear power's lifecycle are equivalent to those of wind, hydro and solar power.

The environmental work of the Loviisa power plant is guided by the environmental standard ISO 14001. The system covers all operations by the Loviisa power plant and its contractors who work at the island of Hästholmen. As a result of the Loviisa nuclear power plant's electricity production, Finland emits about 6 million tonnes less carbon dioxide emissions compared to the equivalent amount of fossil fuel-based electricity.

The safety condition of the power plant remained good, and both the production and equipment availability was at a very high level. Excellence in plant safety is an absolute prerequisite of safe and efficient operations for employees and the environment, and it is a sign of professionalism.

In 2022 we stayed within all permit limits in terms of environmental impacts.

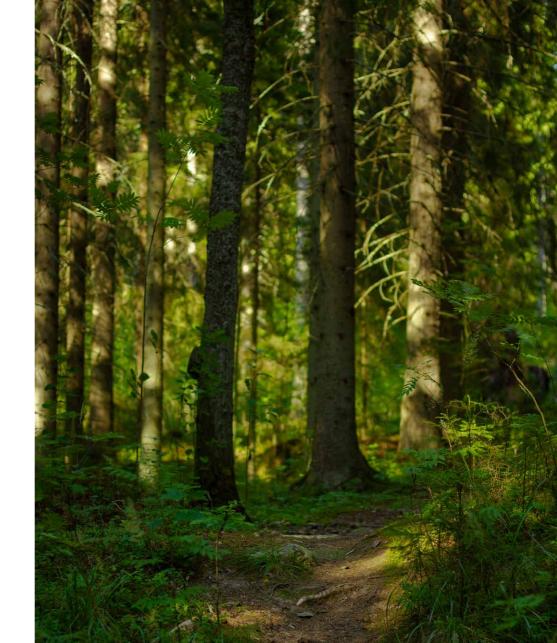
Radiation safety

The annual collective radiation dose of the Loviisa power plant's own personnel and external contractors in 2022 was the lowest in the plant's operating history. This shows that long-term work in radiation safety produces good results.

Emissions of radioactive effluents into the environment in 2022 were, as in previous years, significantly lower than the limits set for nuclear power plant emissions.

Based on emissions and meteorological data, the estimated radiation dose to the surrounding population was about 0.2% of the set dose limit. The radiation dose to the surrounding population from radioactive substances originating from the Loviisa power plant accounted for only a minor increase compared to the radioactive dose from other sources (like, e.g., radon and medicine).

The radiation monitoring programme carried out in the power plant surroundings occasionally detected radionuclides originating from the plant, but the concentrations detected were very small.


Waste management

Waste management at the Loviisa power plant is comprised of two separate areas: waste management for the non-controlled area and waste management for the controlled area. All waste generated in the controlled area is treated as radioactive. Waste generated outside the controlled area can be treated as waste from a conventional industrial plant.

The goal of conventional waste management is to prevent the production of waste and to reduce the amount of landfill waste through effective sorting. In 2022 about 639 tonnes of waste was transported from the power plant area. Of this, 21% was landfilled, 58% was reused as materials or energy, and 12% was treated as hazardous waste.

Waste generated in the controlled area is divided into three categories: Low-level waste (maintenance waste), intermediate-level waste (liquid waste), and high-level waste (spent fuel). Maintenance waste is either cleared as non-active and treated as conventional waste or disposed of in the final repository located at a depth of 110 metres in the power plant area. Also the solidified liquid waste was disposed of in the final repository.

Thanks to efficient sorting and packaging, in 2022 a small proportion of maintenance waste went to final disposal. Liquid waste is purified and released into the sea or stored and solidified in concrete and then disposed of in the final repository. Spent fuel is stored to await final disposal in Eurajoki.

Responsible nuclear waste management

The environmental work of the Loviisa power plant is managed according to an ISO 14001 certified environmental management system.

Total amount of waste

702 t

Amount of conventional waste

91%

Conventional waste

Waste for recovery

Waste to landfill

Hazardous waste for further processing

e.g. chemicals and solvents

Nuclear waste

Spent fuel

Interim storage at the power plant premises

Final disposal to Posiva, at Eurajoki

2040's

Waste for final disposal at the power plant site

Final disposal in the final repository

Cooling water

The power plant's most significant environmental impact is the thermal load on the sea caused by the cooling water, which heats up by about 10 degrees as it passes through the plant. In practice, two-thirds of the thermal energy produced by the reactor ends up in the sea with the cooling water. According to temperature measurements, the discharged water raises the temperature of the sea water during the growing season by about 1-2.5 degrees within a 1-2 kilometre range from the discharge point.

The cooling water discharge area remains unfrozen throughout the winter. The size of the open water and thin ice area depends on winter temperatures. In 2022, the power plant used a total of about 1,323 million m³ of sea water for cooling, and the thermal load on the sea totalled 55,156 terajoules.

In accordance with the environmental permit, the amount of cooling water released into the sea should not exceed 1,800 million m³ per year or 56 m³/s. The cooling water's thermal load on the sea may not exceed 60,000 terajoules annually. The limits set by the permit were not exceeded in 2022.

Service water

The process and domestic water required by the power plant is sourced from Lake Lappominjärvi, which is located about 5 kilometres north of the power plant.

The water is purified before use at the water plant, and the water used as process water is additionally treated at the demineralisation plant. The total volume of water withdrawn from Lake Lappominjärvi in 2022 was about 131,736 m³.

According to the service water withdrawal permit, the power plant can withdraw up to 180 m³/h of water from the lake for a short period of time and a maximum of 150 m³/h per guarter.

Key figures

IN 2022, LOVIISA NUCLEAR POWER PLANT GENERATED

7.9 TWh ELECTRICITY without carbon dioxide emissions

The amount of electricity generated at the Loviisa power plant is almost equivalent to the total electricity consumption of the cities Helsinki, Espoo and Vantaa.


LOAD FACTOR
Loviisa 1

90.5%

Loviisa 2 **88.2%**

LOVIISA NUCLEAR POWER PLANT'S SHARE OF FINLAND'S TOTAL ELECTRICITY PRODUCTION IS OVER 10% >

Reused as material

Waste to recycling

Reused as energy

58%

- Waste to landfill
- Hazardous waste
 (e.g. chemicals and solvents)
- Radioactive maintenance waste (to final repository)
- Radioactive liquid waste (to final repository)
- Spent fuel

The amount of waste is affected by, among other things, the lengths of the annual outages and the work done in them, especially demolition work.

Occupational safety

OCCUPATIONAL INCIDENTS

Loviisa power plant, own personnel

2022

2021

Loviisa power plant, external personnel

2022 3

2021 3

OBSERVATION REPORTS (NO.)

2022 **1,830**

2021 1,440

The power plant uses an observation report procedure to collect information for use at the power plant and for safety-related statistics. Observation reports are also made for "near miss" incidents and possibly hazardous incidents.

PERSONNEL

Own personnel

Temporary employees 13

Women

462 87

External personnel

Fortum's technical support in Espoo, ca. 170

Permanent contractors, ca. 100

Summer workers 80

During annual outages, ca. 750

Emissions into air	2022	2021	annual emissions
Noble gases, TBq (Kr-87 equivalent)	5.2	5.5	14 000
lodine, TBq (I-131 equivalent)	0.0000002	0.00006	0.22
Emissions into water	2022	2021	Permitted annual emissions
Cooling water, million m ³	1324	1394	1800
Thermal load into the sea, TJ	55 156	57 337	60 000
Tritium, TBq	15.4	14.3	150
Other radioactive nuclides, TBq	0.00007	0.001	0.89

Permitted

Annual load caused by domestic water

Emissions into air

	2022	2021
Biological oxygen demand, kg	34	26
Chemical oxygen demand, kg	206	195
Phosphorus, kg	3.0	3.1
Nitrogen, kg	943	654
Solids, kg	264	179
Domestic wastewater volumeme, m³	18 028	18 375

Annual load caused by process wastewater

	2022	2021
Phosphorus, kg	0.5	5.6
Nitrogen, kg	317	1 279
Solids, kg	31	40
Process wastewater volume, m ³	204 208	225 315

Wastewater

The domestic wastewater generated is treated at the power plant area's biological-chemical wastewater treatment plant, to which about 18,028 m³ of wastewater was piped in 2022.

In accordance with the environmental permit, domestic wastewater must be treated so that the biological oxygen demand (BOD7ATU) of wastewater discharged into the sea does not exceed 15 mg/l and the total phosphorus concentration does not exceed 0.7 mg/l, calculated as annual averages. The efficiency of the treatment process must be at least 90% for both variables.

According to the monitoring results, the treatment plant reached results compliant with the conditions of the permit: the biological oxygen demand of treated wastewater in 2022 was 1.9 mg/l on average and total phosphorus concentration 0.17 mg/l. The load caused by domestic wastewater in 2022 was 3.0 kg of phosphorus, 942 kg of nitrogen and 263 kg of solids.

The environmental permit of the power plant does not set any limits for the process wastewater load. However, the nutrient load caused by the process wastewater is monitored through samples taken in accordance with the monitoring programme.

The load caused by process wastewater in 2022 was 0.5 kg of phosphorus, 317 kg of nitrogen and 31 kg of solids. The power plant's share of the total load in the Hästholmen sea area in 2022 was about 1% phosphorus and about 5% nitrogen

Environmental incidents

No permit limits were exceeded at the Loviisa power plant in 2022 nor were there any breaches of permit conditions.

The most important task of our nuclear power operations is to produce electricity safely, reliably and competitively, in the short term and long term, while complying with the principles of nuclear and radiation safety, waste management safety, and nuclear material control.

Our operations are based on a high-level safety culture and quality and on continuous improvement.

Our own world-class expertise is a prerequisite for safety and competitiveness.

Our Nuclear Services business is built upon this strong competence base, and our customers are in the centre of the solutions we provide.

