#### Equity story of

## FORTUM – For a cleaner world

Investor / Analyst material May 2019

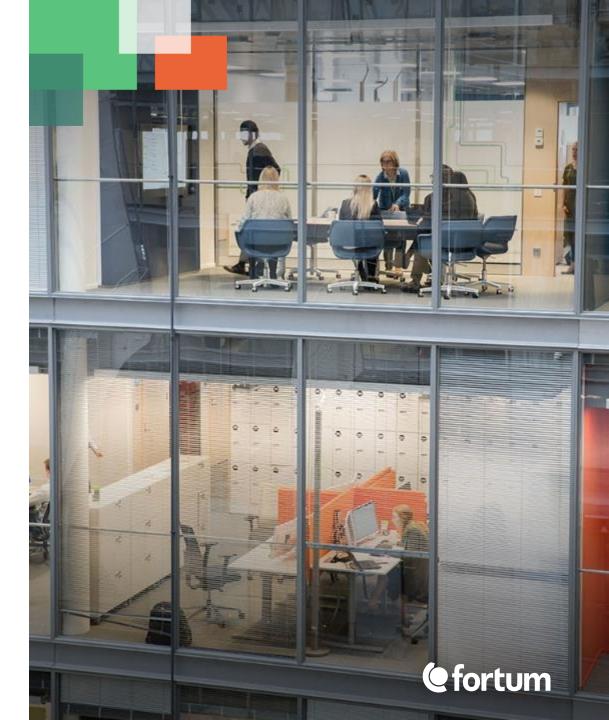


A to the sale of the late the

### Disclaimer

This presentation does not constitute an invitation to underwrite, subscribe for, or otherwise acquire or dispose of any Fortum shares.

Past performance is no guide to future performance,


and persons needing advice should consult an independent financial adviser.

Any references to the future represent the management's current best understanding. However the final outcome may differ from them.

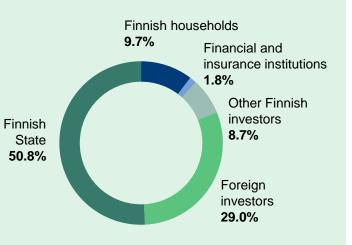


## Content

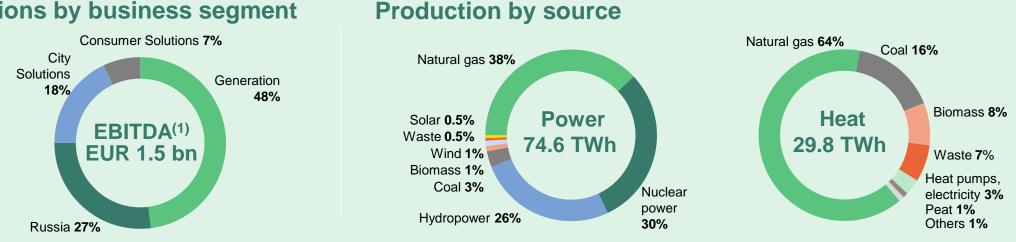
| Fortum in brief                      | 4 – 5   |
|--------------------------------------|---------|
| Energy market transition             | 6 – 11  |
| Fortum's strategic route             | 12 – 20 |
| First quarter 2019                   | 21 – 31 |
| Appendices                           |         |
| European and Nordic power markets    | 33 – 43 |
| Fortum's power generation            | 44 – 50 |
| Fortum's Russian capacity and prices | 51 – 52 |
| Historical achieved prices           | 53      |
| Dividend                             | 54      |
| IR contacts                          | 55      |



### Fortum at a glance


#### **Description of Fortum**

- A leading clean-energy company across the Nordic region, the Baltic countries, Poland, and Russia
- A circular economy champion, providing solutions for sustainable cities, including waste, recycling, and biomass
- Rated BBB (negative outlook) and BBB (stable outlook) by S&P and Fitch respectively
- In 2018, Fortum closed its tender offer to shareholders in Uniper (holding of 49.99% of the outstanding shares and voting rights as of 31.12.2018)


#### Key shareholders

- Listed on the Helsinki Stock Exchange since 1998
- Market capitalisation • of ~EUR 17bn
- Finnish State is a • majority owner

30.4.2019



#### **Operations by business segment**

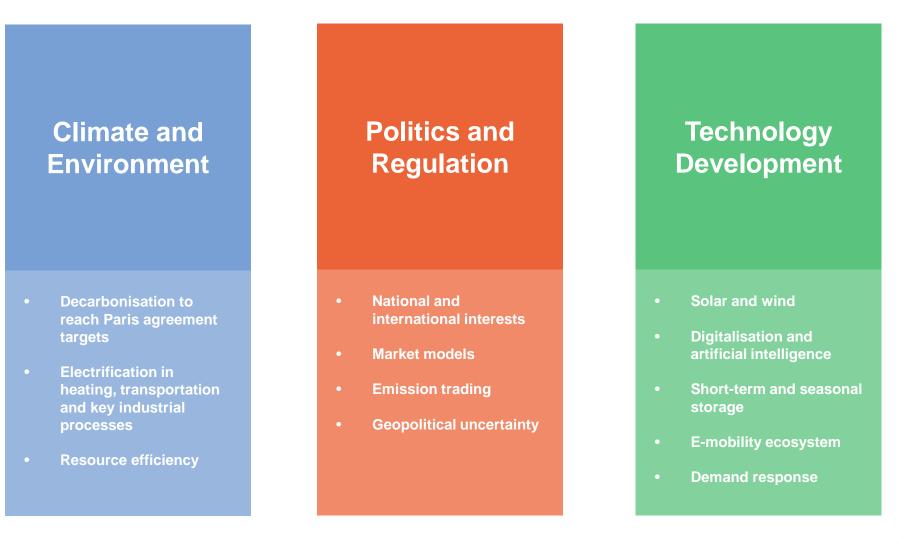




#### Note: All data as of FYE 2018 unless otherwise stated

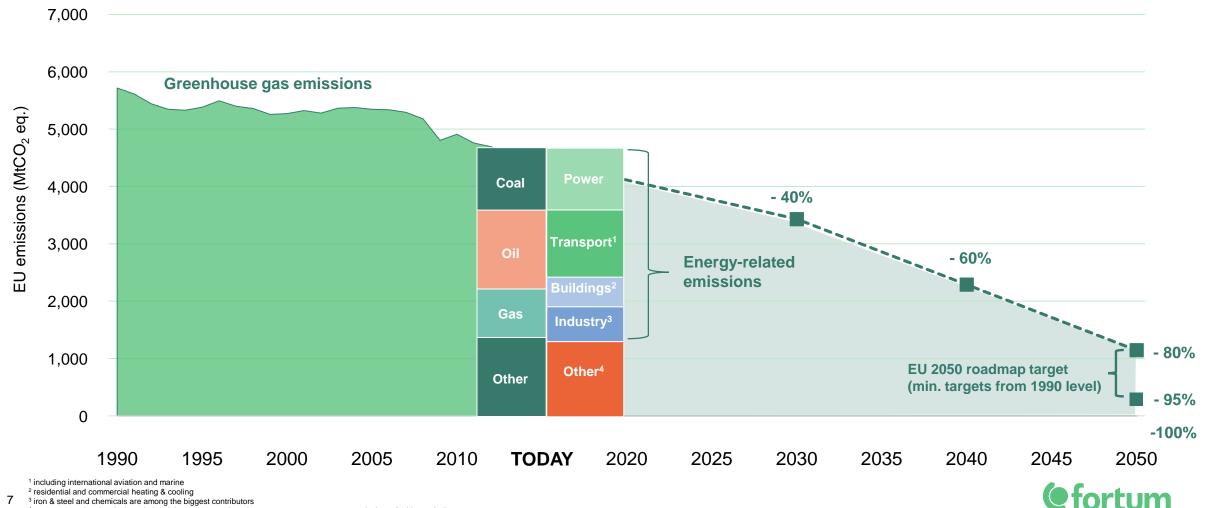
(1) Comparable EBITDA defined as operating profit plus depreciation and amortisation less items affecting comparability

4


## Fortum's geographical footprint

| Nordic countries                                | Russia<br>PAO Fortum                                                     | Key figures 201                                  | 8<br>EUR 5.2 bn                                            |  |
|-------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|--|
| <sup>#3</sup> 43.5 TWh<br>Heat sales<br>5.9 TWh | <sup>#10</sup> Power generation<br><b>29.5 TWh</b>                       | Comparable<br>EBITDA<br>Total assets             | EUR 1.5 bn<br>EUR 22 bn                                    |  |
| Electricity customers 2.4 million               | #8 Heat sales 20.7 TWh                                                   | Personnel                                        | 8,300                                                      |  |
| PolandPower generation0.6 TWhHeat sales3.5 TWh  | Baltic countries<br>Power generation<br>0.7 TWh<br>Heat sales<br>1.4 TWh | Sales by marker<br>Poland<br>6%<br>Russia<br>20% | t area 2018<br>Other 4%<br>Nordics<br>69%<br>EUR<br>5.2 bn |  |

Note: Ranking based on year 2017 pro forma figures Source: Fortum, company data, shares of the largest actors


**@**fortum

## Three main drivers are shaping the future electricity markets

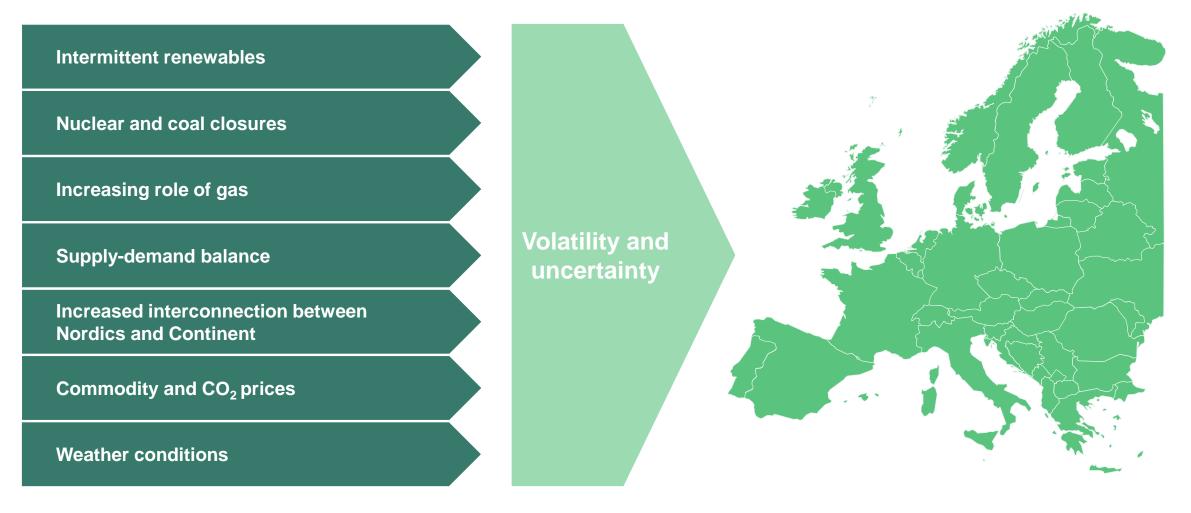




### EU needs to eliminate CO<sub>2</sub> emissions to reach climate goals



<sup>4</sup> non-energy related emissions: industrial processes and product use, waste management, agriculture, fugitive emissions Source: IEA World Energy Outlook 2017, Eurostat, Eurelectric, Fortum Industrial Intelligence

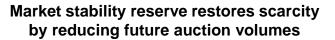

## The decades of electricity will affect several sectors – and Fortum is well positioned for decarbonisation

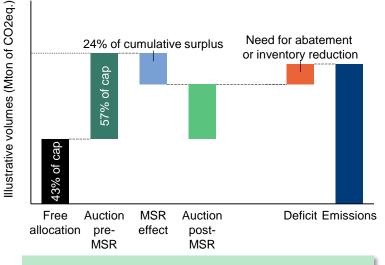
| Global climate<br>challenge (indicative) | <i>Electricity demand</i> (2018-2050) | Sector            | Future solutions, examples                                                | Fortum's current offering, examples |
|------------------------------------------|---------------------------------------|-------------------|---------------------------------------------------------------------------|-------------------------------------|
|                                          |                                       | Power             | CO <sub>2</sub> -free generation, hydrogen,<br>batteries, demand response | Nuclear, hydro, solar, wind         |
| 4°C                                      | +                                     | Transport         | Electric vehicles,<br>hydrogen/biofuels for heavy transport               | E-mobility,<br>pyrolysis            |
|                                          |                                       | Heating & cooling | Low-CO <sub>2</sub> DH/CHP, heat pumps, hydrogen                          | Biofuel,<br>waste-to-energy DH/CHP  |
| 1.5°C                                    | +++                                   | Industry          | Electrified processes, hydrogen, resource efficiency, CCS                 | B2B solutions                       |
|                                          |                                       | Other             | Recycling,<br>biomaterials (e.g. fractioning)                             | Plastic recycling                   |

DH/CHP = District heating/combined heat and power CCS = Carbon capture and storage



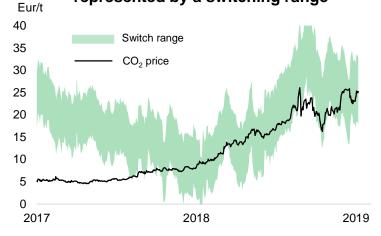
## Volatility and uncertainty in the European power market increases the value of flexible assets




## The MSR introduces tightness to carbon market – in 2018 coal-to-gas switching was modest due to high gas price

# Linear reduction factor (LRF) tightens the market $MtCO2_{2500}$ 1.74 % LRF $2000_{1500}$ $1000_{1000}$ $1000_{1000}$ $2000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $1000_{1000}$ $10000_{1000}$ 1000


- Linear reduction factor (LRF) is the percentage of baseline supply<sup>1</sup> by which the annual supply of allowances (cap) is reduced every year. LRF is set at
  - 1.74% for 2013-2020 (equals to a reduction of 38 MtCO<sub>2</sub>/year)
  - 2.2% for 2021-2030 (equals to a reduction of 48 MtCO<sub>2</sub>/year)
- In total, emissions are set to decrease by 43% by 2030 vs. 2005
- Next LRF review is scheduled for 2024
  - 3.03% LRF from 2030 onwards would deliver net zero emissions by 2050





- When TNAC<sup>2</sup> > 833 Mt, MSR deducts 24% of the TNAC from the auction volume each year placing them into the reserve during 2019-2023
   MSP rate is 12% during 2024 2020
  - MSR rate is 12% during 2024-2030
- When TNAC < 400 Mt, MSR releases 100 million EUAs annually from the reserve adding them to future auctions
- 900 million back loaded allowances from 2014-2016 will be transferred into the MSR in 2019-2020
- As from 2023, allowances in MSR above the total number of allowances auctioned during the previous year will be cancelled
- Next MSR review is scheduled in 2021

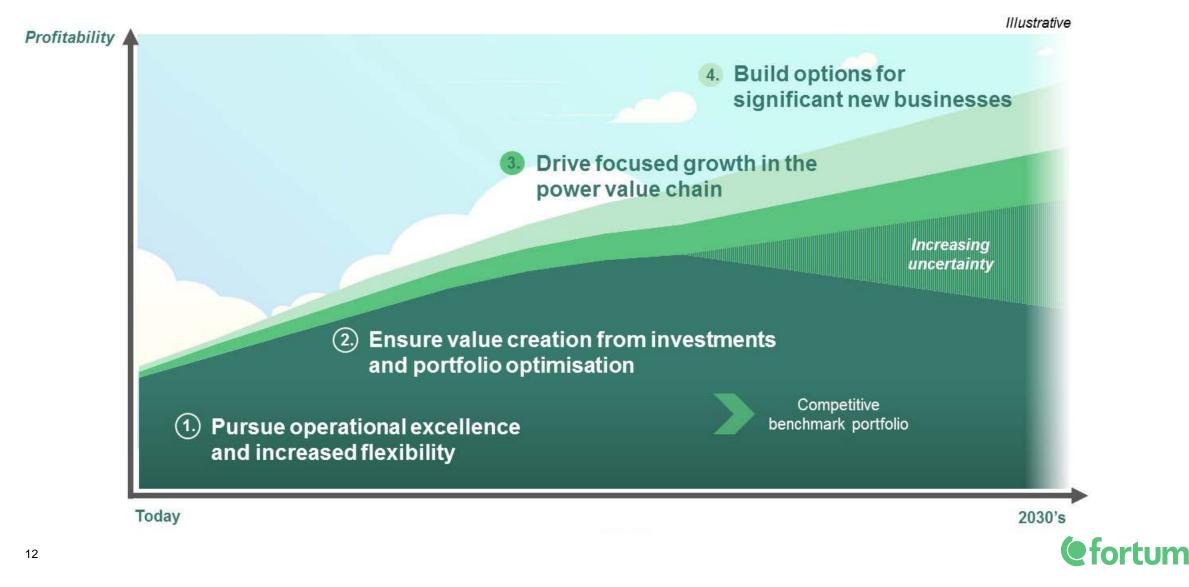
<sup>2</sup> TNAC = total number of allowances in circulation = supply – (demand + allowances in the MSR). According to the latest publication May 15, 2018 the TNAC corresponds to 1655 million allowances. Abatement from coal to gas switching depends on coal and gas prices, together represented by a switching range



- CO<sub>2</sub> price has more than tripled since November 2016, when the final decision was reached on the future EU ETS rules, including the intake rate of the Market Stability Reserve, which became operational in January 2019
- The EUA market is in a process of finding the appropriate price at which enough fuel-switching occurs in order to balance supply and demand
- The gas/coal price relationship has become a major price anchor for the EUA
- Political risks also continue to play a role in EUA prices, with developments around Brexit in particular being closely watched

Efficiency assumptions in switching range; at low-end: gas 52% and coal 34%; at high-end: gas 49% and coal 36%. O&M cost assumptions apply.




## Several Western European countries exiting coal over the next decade

- France to phase out coal from power sector at latest in 2022
- United Kingdom to exclude coal condense from capacity market by capping allowed emissions from 2025
- Netherlands' new government aims at exit by 2030, regulation not yet in place
- Germany to set a binding coal exit date by end of 2019
  - Closure of 12.5 GW by 2022 (compared to 42.5 GW in 2017), additional 13 GW by 2030, latest 2038 all remaining capacity
  - Compensation to power plant operators remains open, coal regions to receive EUR 40 billion over next 20 years
  - EUR 2 billion annual compensation to customers in lower grid fees and/or taxes proposed
  - Respective amount of CO<sub>2</sub> allowances to be cancelled in the EU Emission Trading Scheme (ETS)





## Positioning Fortum for the decade of electricity – For a cleaner world



## Fortum's strategic priorities in a changing energy market

- 1. Pursue operational excellence and increased flexibility
- Ensure benchmark performance
- Focus on cash flow and efficient use of balance sheet

- 2. Ensure value creation from investments and portfolio optimisation
- Increase shareholder value from Uniper
- Optimise portfolio to fit the changing business environment

- 3. Drive focused growth in the power value chain
- Grow in CO<sub>2</sub>-free power generation
- Develop value-adding offerings and solutions for customers

- 4. Build options for significant new businesses
- Create new sizeable profit contributor independent of power prices
- Build on industrial logic and synergies with current businesses and competences



### Delivering on financial targets through operational excellence and portfolio optimisation in the short to mid term

#### Strategic priorities...

#### **Operational excellence**

- Continue productivity improvement
- Prioritise capital expenditure

#### **Increased flexibility**

- Maximise flexibility in current businesses and assets
- Develop new sources of flexibility

#### Value creation and portfolio optimisation

- Ensure competitive asset fit for changing business environment
- Focus on core businesses
- Selective investments

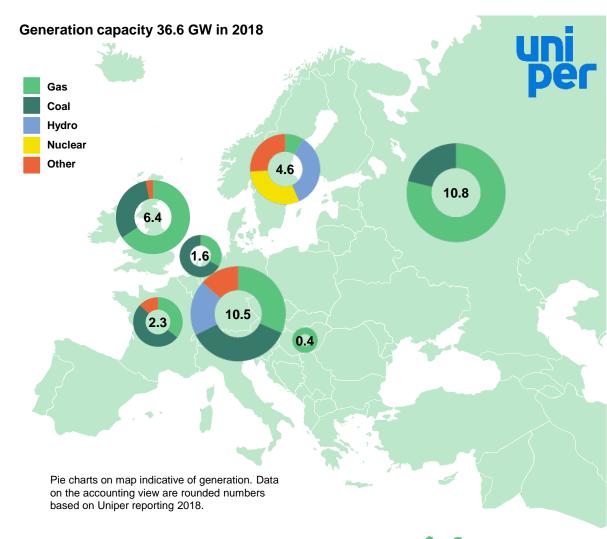
#### ... creating value

- Benchmark performance
- Optimise cash flow
- Strengthen balance sheet
- Create financial flexibility
- Solid investment grade rating



## Investment in Uniper supports Europe's energy transition and provides a valuable cash flow contribution

#### Fortum and Uniper strongly complement each other


- Uniper is an international utility with a diversified portfolio and significant hydro power assets
- Fortum and Uniper have the strategic mix of assets and expertise to drive an affordable and secure transition towards a low-carbon Europe

#### Fortum is the largest shareholder in Uniper

- Fortum's CFO Markus Rauramo is the Vice Chairman of Uniper's Supervisory Board
- Supervisory Board mandates extend until 2022
- Fortum's shareholding at 49.99%, Russian regulatory decision limits shareholding to less than 50%

#### The Uniper investment creates shareholder value

- Uniper's future dividends will contribute to Fortum's cash flow
- Shareholder value created on higher Uniper share price compared to offer price of EUR 21.31



15

## Fortum is a forerunner in sustainability

We engage our customers and society to drive the change towards a cleaner world. Our role is to accelerate this change by reshaping the energy system, improving resource efficiency, and providing smart solutions. This way we deliver excellent shareholder value

Increasing  $CO_2$ -free power generation Annual  $CO_2$ -free power generation has almost tripled from 15 TWh in 1990 to 43 TWh in 2018

#### Among the lowest specific emissions

96% of its power generation in the EU and 57% of its total power generation was  $CO_2$ -free in 2018. Fortum's specific emissions from power generation in the EU were 28 gCO<sub>2</sub>/kWh in 2018, total 174 gCO<sub>2</sub>/kWh.

#### Growing in solar and wind

Targeting a multi-gigawatt portfolio in solar and wind

Fortum listed in several sustainability indexes and ratings:





## Fortum drives CO<sub>2</sub>-emission free solutions 'For a cleaner world' – cases

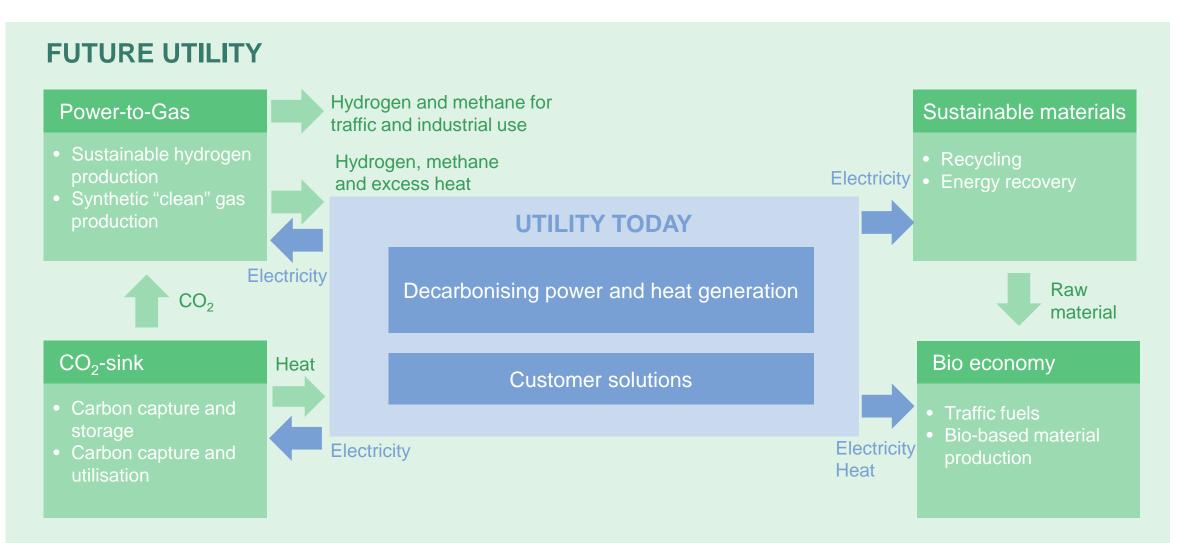
## Increased use of excess heat in district heating

- Excess heat from data centres utilised for heating homes in Espoo, Finland and Oslo, Norway
- Other excess heat sources currently in use include wastewater treatment plants, commercial and industrial buildings etc.

## Fuel conversions from coal to bio and waste

- With a new multi-fuel plant in Zabrze, Fortum is a first mover in Poland utilise waste derived fuel in heat production
- Fortum is replacing part of its Finnish fossil-based heat production by building a biofuel-fired heating facility in Espoo

Better recycling improves resource efficiency and minimises the CO<sub>2</sub> impact


- Fortum is the first company in the Nordics to produce highquality plastic granulates to replace virgin raw material
- The plastic refinery in Riihimäki, Finland has recently been expanded and new investments in other countries are under evaluation

Increasing investments into low-CO<sub>2</sub>
 and non-combustion heating sources

Growth in valueadded recycling



## **Building the utility of the future**





### Fortum's long-term financial targets and dividend policy



Comparable Net debt/EBITDA ratio at around

**2.5**x

Having a **Solid investment grade rating** is a key priority for Fortum Fortum's dividend policy is to pay a **Stable**, **sustainable**, **and over time increasing** dividend of 50-80% of earnings per share, excluding one-time items



## **Key investment highlights**

Optimised and flexible generation mix

96% CO<sub>2</sub>-free EU generation portfolio

A forerunner in sustainability with growth ambitions in solar and wind

Uniper investment supports energy transition and adds to Fortum's cash flow contribution

#4 in Nordic heat, electricity sales and #3 electricity generator in the Nordics<sup>(1)</sup> Finnish State is a majority owner

Commitment to financial discipline underpins balance sheet strength

Leverage towards 2.5x net debt/EBITDA target over 2-3 years

Robust liquidity position with diversified access across markets

Solid investment grade rating is a key priority for Fortum



## Interim Report January-March 2019

Fortum Corporation 26 April 2019



## Q1 2019 – Result impacted by higher power prices and lower hydro volumes

- Nordic power price up +22% Y/Y
  - Fortum's achieved power price +14% Y/Y
- Reservoir levels below long-term average
  - Fortum's hydro generation -25% Y/Y
- Volatile commodity and CO<sub>2</sub> prices
- Comparable operating profit at EUR 408 million, +1%
- EPS at EUR 0.38 (0.43)

22

- Items affecting comparability EUR -0.04 (0.07)
- Strong cash flow from operating activities totalled EUR 751 (273) million – change in settlement for futures
- Strategy implementation operational excellence in focus
- Discussions restarted with Uniper

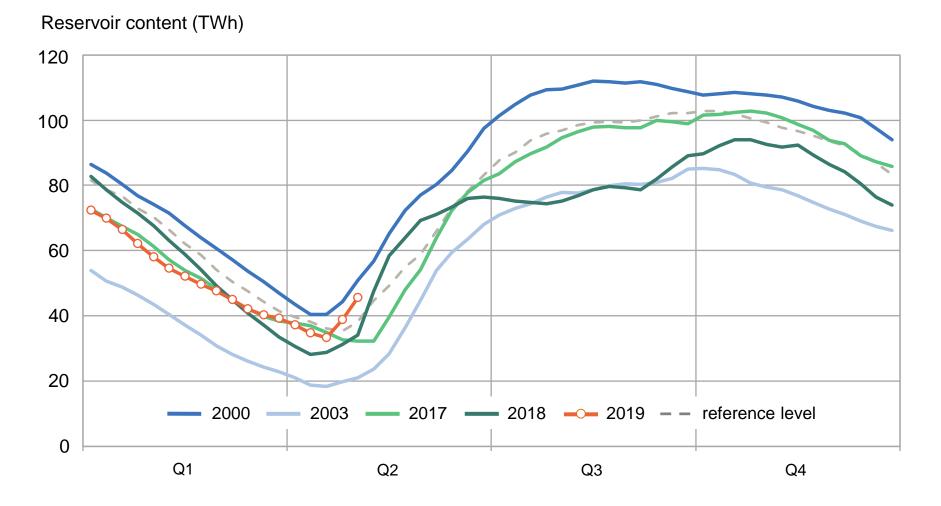


## Q1 2019 highlights

Fortum wins right to build 250 MW solar power plant in Rajasthan, India Launch of world's first market place 'Puro' for CO<sub>2</sub> removals

Kalax wind project approved within Finnish national scheme

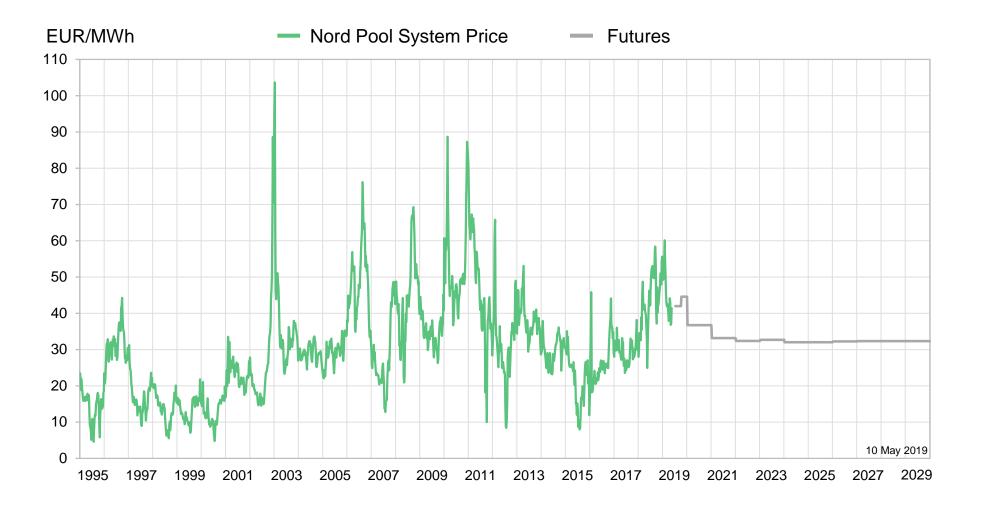
OL3 received its operating license Bonds issued EUR 2.5 billion


> Russian Fortum-Vostok JV as guaranteeing electricity supplier to 1.5m retail customers

New technology to boost EV battery recycling

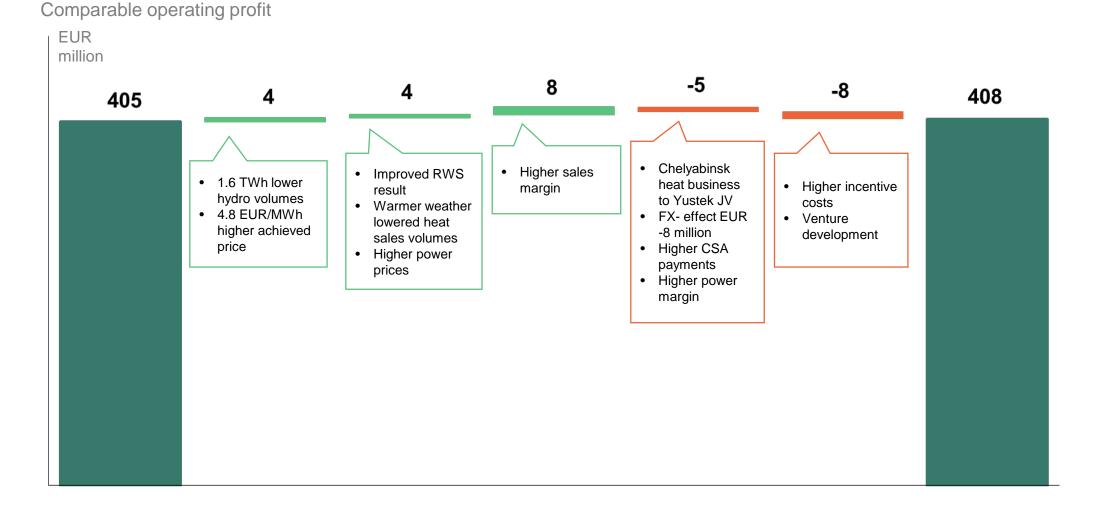
> Commercial operation of 50 MW wind at Ulyanovsk in Russia started




## **Nordic water reservoirs**



Source: Nord Pool




## Wholesale power price





## Q1 2019 – Higher achieved power price and lower hydro volumes



**Consumer Solutions** 

Other

Q1 2019

**(e**fortum

Russia

26

Q1 2018

Generation

**City Solutions** 

## **Key financials**

| MEUR                                              | Q1 2019 | Q1 2018 | 2018  | LTM   |
|---------------------------------------------------|---------|---------|-------|-------|
| Sales                                             | 1,690   | 1,585   | 5,242 | 5,347 |
| Comparable EBITDA                                 | 545     | 538     | 1,523 | 1,530 |
| Comparable operating profit                       | 408     | 405     | 987   | 990   |
| Operating profit                                  | 358     | 482     | 1,138 | 1,014 |
| Share of profits of associates and joint ventures | 111     | 47      | 38    | 102   |
| Profit before income taxes                        | 424     | 493     | 1,040 | 971   |
| Earnings per share, EUR                           | 0.38    | 0.43    | 0.95  | 0.90  |
| Net cash from operating activities                | 751     | 273     | 804   | 1,282 |

- Sales and comparable operating profit driven by higher power prices
- Share of profits from associates increased mainly due to Uniper, EUR 49 million
- EPS excluding items affecting comparability of EUR 0.42 (0.36)
- Strong cash flow due to change in settlements for futures and working capital



### **Income statement**

| MEUR                                                   | Q1 2019 | Q1 2018 | 2018   | LTM    |
|--------------------------------------------------------|---------|---------|--------|--------|
| Sales                                                  | 1,690   | 1,585   | 5,242  | 5,347  |
| Other income                                           | 21      | 24      | 130    | 127    |
| Materials and services                                 | -917    | -825    | -2,795 | -2,887 |
| Employee benefits                                      | -122    | -113    | -459   | -468   |
| Depreciations and amortisation                         | -137    | -133    | -536   | -540   |
| Other expenses                                         | -127    | -133    | -594   | -588   |
| Comparable operating profit                            | 408     | 405     | 987    | 990    |
| Items affecting comparability                          | -50     | 77      | 151    | 24     |
| Operating profit                                       | 358     | 482     | 1,138  | 1,014  |
| Share of profits/loss of associates and joint ventures | 111     | 47      | 38     | 102    |
| Finance costs - net                                    | -46     | -36     | -136   | -146   |
| Profit before income tax                               | 424     | 493     | 1,040  | 971    |
| Income tax expense                                     | -65     | -94     | -181   | -152   |
| Profit for the period                                  | 359     | 400     | 858    | 817    |

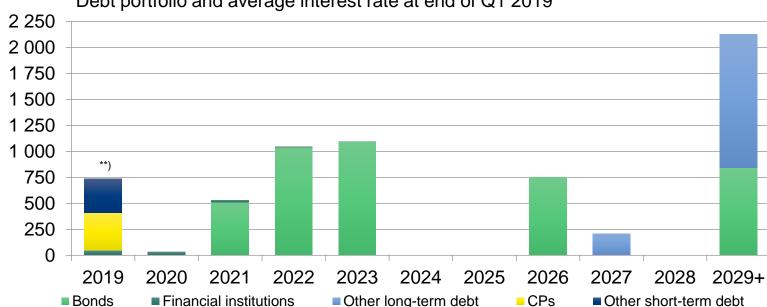
- Sales and comparable operating profit improved mainly due to higher power prices
- Share of profits from associates increased mainly due to share of profits from Uniper, EUR 49 million
- Finance costs slightly higher due to repayment of bridge loan of EUR 1.75 billion



#### **Cash flow statement**

| MEUR                                             | Q1 2019 | Q1 2018 | 2018   | LTM    |
|--------------------------------------------------|---------|---------|--------|--------|
| Comparable EBITDA                                | 545     | 538     | 1,523  | 1,530  |
| Realised FX gains/losses                         | -5      | 42      | 231    | 184    |
| Paid net financial costs, income taxes and other | -59     | -107    | -280   | -232   |
| Change settlements for futures                   | 292     | -91     | -524   | -141   |
| Change in working capital                        | -22     | -109    | -146   | -59    |
| Net cash from operating activities               | 751     | 273     | 804    | 1,282  |
| Capital expenditures                             | -150    | -133    | -579   | -596   |
| Acquisitions of shares                           | -12     | -18     | -4,088 | -4,082 |
| Divestments of shares                            | 8       | 0       | 259    | 267    |
| Change in cash collaterals and restricted cash   | 310     | -63     | -36    | 337    |
| Other investing activities                       | 11      | 1       | 46     | 56     |
| Cash flow from investing activities              | 167     | -213    | -4,398 | -4,018 |
| Cash flow before financing activities            | 918     | 60      | -3,594 | -2,736 |
| Paid dividends                                   |         |         | -977   | -977   |

 Strong net cash from operating activities mainly due to EUR 292 million from change in settlement for futures on Nasdaq Commodities


First quarter 2019

- Net cash from investing activities positively impacted by EUR 310 million due to new non-cash collateral agreement to release pledged cash from the Nordic power exchange
- Dividend of EUR 977 million paid on 4 April, not impacting Q1 2019



## Ongoing actions to deleverage aims to optimise cash flow and maintain financial flexibility

|                                      | LTM   | 2018  | TARGET       |
|--------------------------------------|-------|-------|--------------|
| Comparable EBITDA, MEUR              | 1,530 | 1,523 |              |
| Interest-bearing net debt, MEUR      | 4,995 | 5,509 |              |
| Comparable net debt/EBITDA ratio*)   | 3.3x  | 3.6x  | Around 2.5x  |
| Return on capital employed (ROCE), % | 6.5   | 6.7   | At least 10% |



Debt portfolio and average interest rate at end of Q1 2019

<sup>\*)</sup> Uniper's EBITDA or debt have not been consolidated as Uniper is accounted for as an associated company. 30 \*\*) In addition, Fortum has received EUR 67 million based on Credit Support Annex agreements with several counterparties. This amount has been booked as a short term liability.

- Liquid funds of EUR 1.7 billion
- Committed credit lines of FUR 1.8 billion
- FUR 2.5 billion of bonds issued in three tranches
- Total loans and borrowings of EUR 6.591 million
  - Average interest 2.2% (2018: 2.4%)
  - Portfolio mainly in EUR and SEK with average interest cost 1.4% (2018: 1.7%)
  - EUR 750 million (2018: 686) swapped to RUB, average interest cost including cost for hedging 8.5% (2018: 8.3%)
  - Other short-term debt impacted by the new non-cash collateral arrangement for the Nordic power exchange



#### Outlook

**Demand growth** 

#### Hedging<sup>\*)</sup>

Electricity demand in For the remainder of the Nordics is expected to grow by ~0.5% on average

2019: ~75% hedged at EUR 32 per MWh

For 2020: ~55% hedged at EUR 31 per MWh (31 DEC 2018: 45% at EUR 29)

#### 2019 Estimated annual capital expenditure,

including maintenance and excluding acquisitions

EUR 600-650 million

#### **Targeted cost** synergies of Hafslund transaction

EUR 15-20 million gradually materialising 2019-2020:

City Solutions: EUR 5-10 million

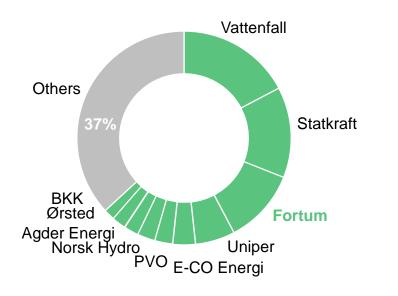
**Consumer Solutions:** ~EUR 10 million

#### Taxation

Effective tax rate for 2019 for the Group 19-21%

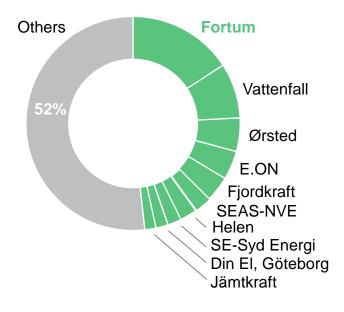
In Sweden nuclear capacity tax abolished from 2018 and hydro assets' real estate tax rate to decrease over a four-year period (2017 - 2020)

 $^{*)}$  from the beginning of 2019 the reported hedge prices also include the effect of proxy hedging This change had a minor effect on the prices. There was no change to the calculation method of the hedge ratio.


## Appendices



### Still a highly fragmented Nordic power market Fortum has the largest electricity customer base in the Nordics

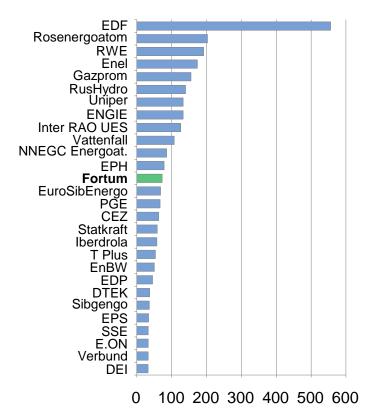

#### Power generation in 2017

402 TWh >350 companies



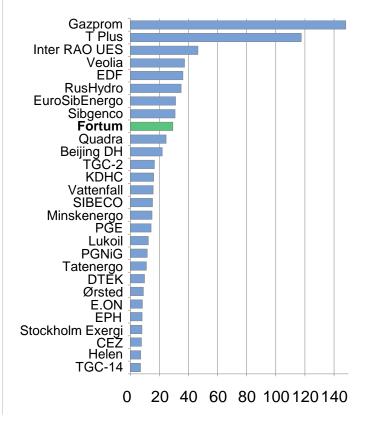
#### **Electricity retail** 15 million customers

~350 companies



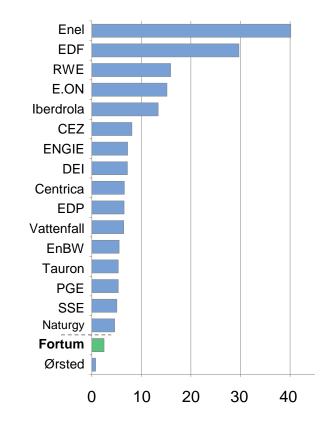



### Fortum mid-sized European power generation player – major producer in global heat


#### **Power generation**

Largest producers in Europe and Russia, 2017 TWh

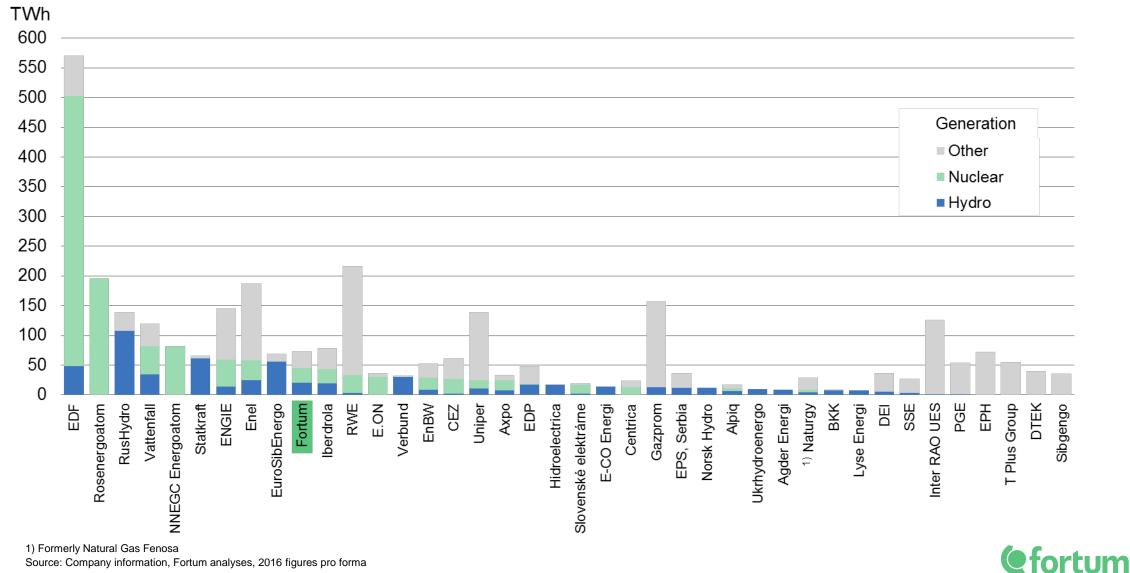



#### **Heat production**

Largest global producers, 2017 TWh

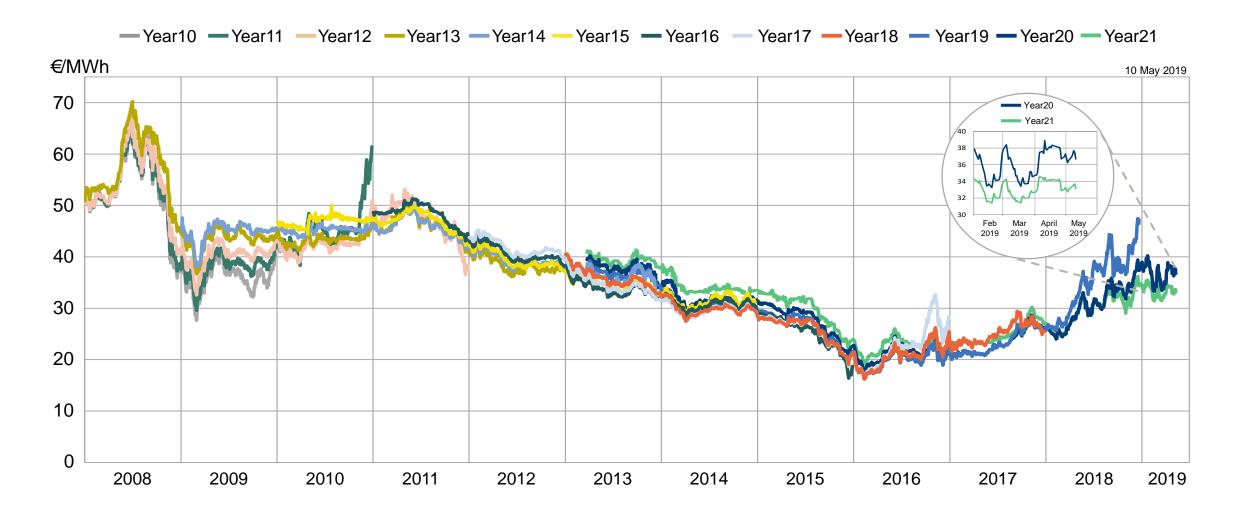


#### Customers


Electricity customers in Europe, 2017 Millions

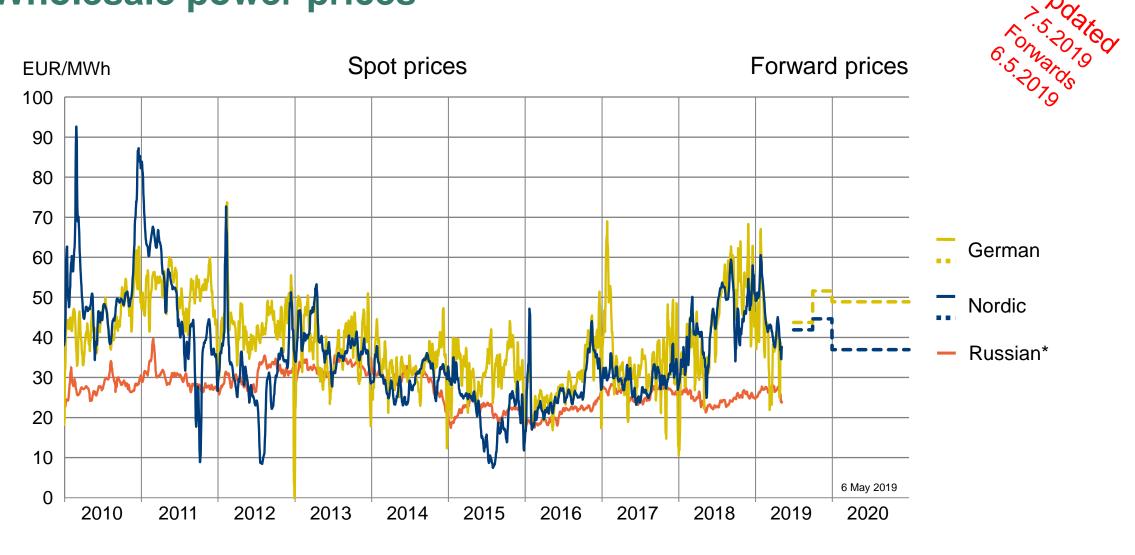


**e**fortum


34

## **Biggest nuclear and hydro generators in Europe and Russia**

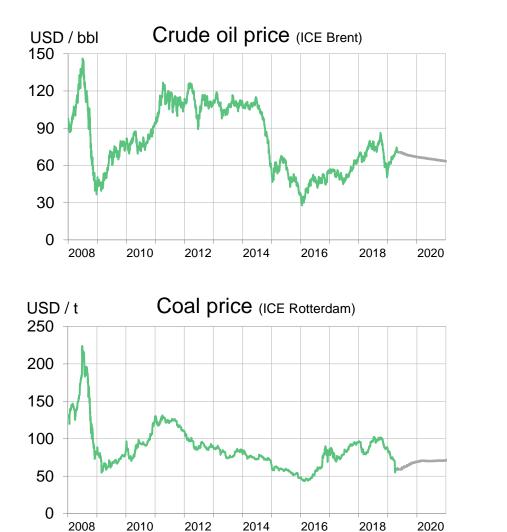



Source: Company information, Fortum analyses, 2016 figures pro forma

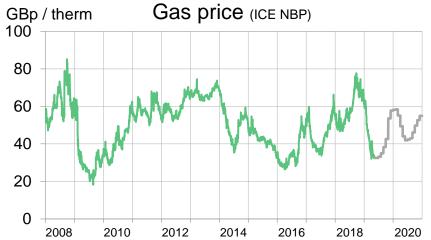
#### **Nordic year forwards**






## Wholesale power prices




\* Including weighted average capacity price



### **Fuel and CO<sub>2</sub> allowance prices**

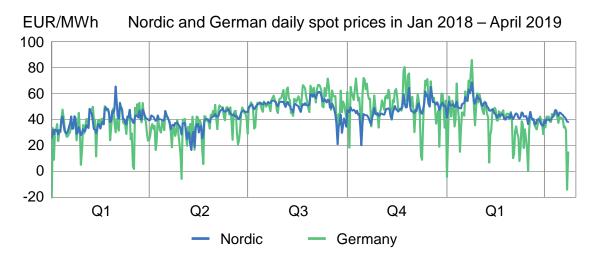








Source: ICE, Thomson Reuters Market prices 10 May 2019; 2019-2020 future quotations


#### **German – Nordic price spread**


#### **SPOT PRICE**

- During Q1 2019, the average spread was -6.0 EUR/MWh with the Nordic system average price at 46.9 EUR/MWh and German price at 40.9 EUR/MWh
- Weak demand and very high wind power output in Germany lowered the German spot price, especially during the first half of March
- During 2012-2018, the average realised German-Nordic spot spread was 4.6 EUR/MWh, fluctuating on an annual level in the range of -1-15 EUR/MWh
- The realised German-Nordic spread is impacted by realised supply and demand fundamentals in Continental Europe and the Nordics

#### FORWARD PRICE

- During Q1 2019, the spread for 2020 delivery traded in the range 9.9-12.9 EUR/MWh, average at 11.6 EUR/MWh
- Expected supply/demand balance in the Nordics and in Continental Europe has an effect on the spread: investments in new interconnector capacity, growth of demand and new renewable capacity as well as amount of exiting nuclear and coal capacity all play a role





EUR/MWh Nordic and German year 2020 forwards in Jan 2018 – April 2019

#### Current transmission capacity from the Nordic area is >6,000 MW

| COUNTRIES            | TRANSMISSION CAPACITY MW |            |  |  |  |  |  |
|----------------------|--------------------------|------------|--|--|--|--|--|
|                      | From Nordics             | To Nordics |  |  |  |  |  |
| Denmark - Germany    | 2,225                    | 2,100      |  |  |  |  |  |
| Sweden - Germany     | 615                      | 615        |  |  |  |  |  |
| Sweden - Poland      | 600                      | 600        |  |  |  |  |  |
| Sweden - Lithuania   | 700                      | 700        |  |  |  |  |  |
| Norway - Netherlands | 723                      | 723        |  |  |  |  |  |
| Finland - Estonia    | 1,016                    | 1,016      |  |  |  |  |  |
| Finland - Russia     | 320                      | 1,300      |  |  |  |  |  |
| Total                | 6,199                    | 7,054      |  |  |  |  |  |

- Theoretical maximum in transmission capacity ~40 TWh per annum, but restrictions especially between DK & DE
- Net export from the Nordic area to Continental Europe and Baltics during the year 2018 was 10 TWh
- Net export during the relatively wet year 2017 was 15 TWh
- Approximately 25 TWh of net export is now reachable





# Nordics, Baltics, the Continental and the UK markets are integrating – interconnection capacity to double by end-2023

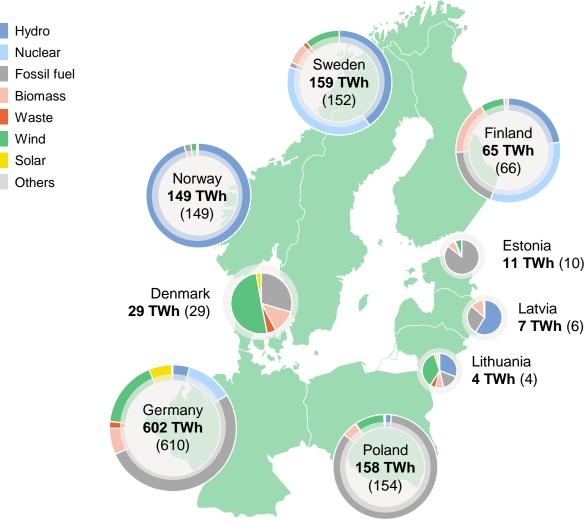
The Northern Seas Offshore Grid and the Baltic Energy Market Integration Plan are included as priority electricity corridors in EU's Infrastructure Guidelines, approved in April 2013

1 Two 1,400 MW NO-UK links as EU Projects of Common Interest: NSL to England due to be ready in 2021, NorthConnect to Scotland under debate in Norway and not yet permitted

- 2 1,400 MW NordLink as first direct NO-DE link is due to start commercial operation in March 2021
- 3 1,400 MW DK-UK Viking Link has got its final permits and is to be built by end-2023
- 4 700 MW COBRAcable from DK to NL is due to be ready during Q3/2019
- Jutland DE capacity will grow by 860 MW by end-2020, with further 1,000 MW increase by end-2023

New interconnections will double the Nordic export capacity to over 12,000 MW by end-2023

- New internal Nordic grid investments provide for increased available capacity for export to the Continent and Baltics
- 6 EU's Connecting Europe Facility co-financing 3<sup>rd</sup> EE-LV transmission line, due to be ready in 2020
- 7 Baltic synchronisation roadmap in June 2018 prioritised a DC sea cable as the required additional PL-LT interconnection by 2025
- 8 Svenska Kraftnät and 50Hertz signed 1/2017 a cooperation agreement on building the 700 MW Hansa PowerBridge DC link between Sweden and Germany by 2025/26


New 400 MW Zealand – DE connection via Kriegers Flak offshore wind area ready in Q3/2019

New interconnectors New Nordic lines

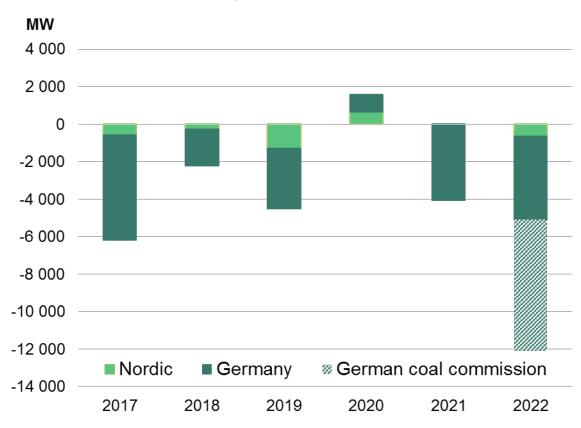
Existing interconnectors



## Power Generation in the Baltic Rim in 2017 (2016)



|                  | NORDIC             | S   | BALTICS            |     |
|------------------|--------------------|-----|--------------------|-----|
| 2017             | TWh                | %   | TWh                | %   |
| Hydro            | *221               | 55  | 6                  | 25  |
| Nuclear          | 85                 | 21  | -                  | -   |
| Fossil fuel      | 26                 | 7   | 12                 | 55  |
| Biomass          | 24                 | 6   | 2                  | 9   |
| Waste            | 4                  | 1   | 0                  | 1   |
| Wind             | 40                 | 10  | 2                  | 10  |
| Solar            | 1                  | 0   | 0                  | 0   |
| Others           | 1                  | 0   | 0                  | 0   |
| Total generation | 402                | 100 | 22                 | 100 |
|                  | Net expoi<br>9 TWh | rt  | Net impor<br>6 TWh | rt  |

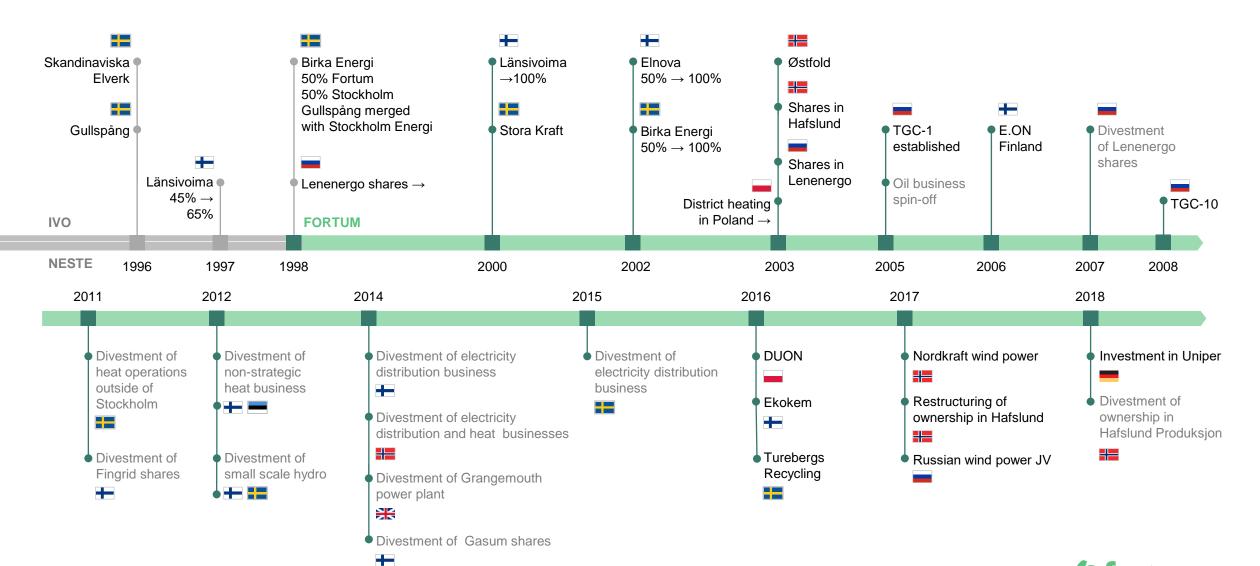

\*) Normal annual Nordic hydro generation 200 TWh, variation +/- 40 TWh.



42 Source: ENTSO-E Statistical Factsheet Graph sizes are illustrative.

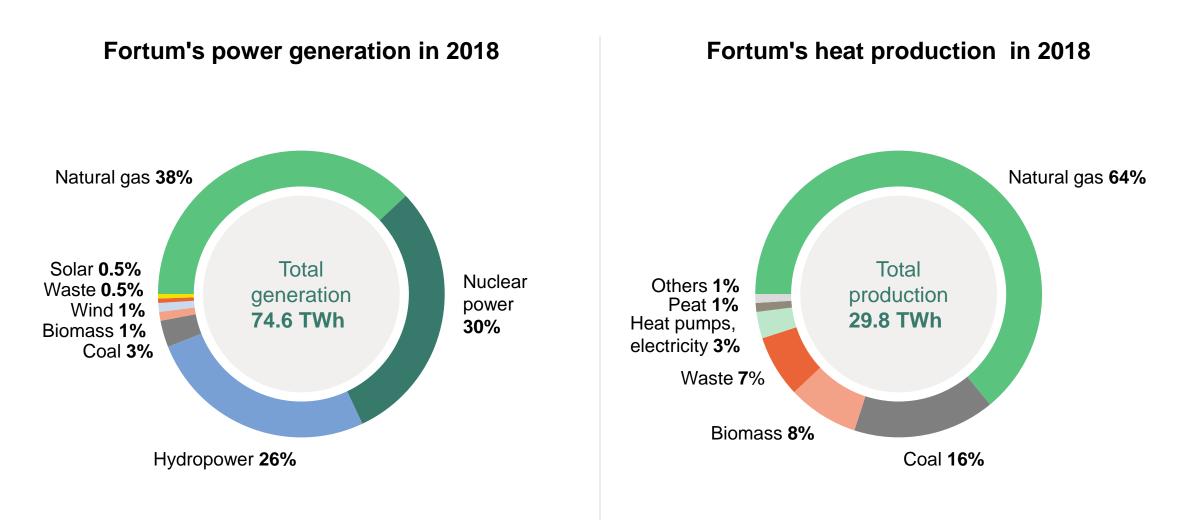
#### Northern European conventional capacity decreasing

## Estimated annual net changes in nuclear and thermal capacity




Estimated capacity changes based on publically announced information from various stakeholders

| DATE           | CAPACITY   | AREA   | UNIT/<br>TRANSMISSION | COMMENT                                                                                                          |
|----------------|------------|--------|-----------------------|------------------------------------------------------------------------------------------------------------------|
| 1.10.2018      | - 1100 MW  | DE     | Lignite reserve       | Niederaußem E & F and Jänschwalde F moved to lignite reserve                                                     |
| 31.12.2018     | - 473 MW   | DE     | Coal                  | Lünen 6&7, decommissioning                                                                                       |
| 31.3.2019      | - 937 MW   | DE     | Coal                  | Gersteinwerk, Kiel-Ostufer, decommissioning                                                                      |
| during 2019    | - 619 MW   | EE     | Oil shale             | Closure of four older units in Estonia                                                                           |
| 1.9.2019       | + 700 MW   | DK1-NL | Transmission          | Cobra cable: trial operation expected to begin in Q3-19                                                          |
| 1.10.2019      | - 800 MW   | DE     | Lignite reserve       | Jänschwalde E, Neurath C                                                                                         |
| 1.10.2019      | + 0-400 MW | DK2-DE | Kriegers Flak         | Offshore connection between DK2 and DE used for both grid connection of offshore wind farms and interconnection. |
| 31.12.2019     | - 1470 MW  | DE     | Phillipsburg 2        | Nuclear unit, decommissioning                                                                                    |
| 31.12.2019     | - 850 MW   | SE3    | Ringhals 2            | Decommissioning                                                                                                  |
| 1.1.2020       | + 1600 MW  | FI     | Olkiluoto 3           | Start of regular electricity production expected in January 2020.                                                |
| 31.3.2020      | - 100 MW   | DK     | Amagerværket 3        | 250 MW coal replaced by 150 MW biomass                                                                           |
| during 2020    | + 1100 MW  | DE     | Datteln 4             | Uniper's coal condensing unit; targeted commissioning mid-2020.                                                  |
| 31.12.2020     | - 856 MW   | SE3    | Ringhals 1            | Decommissioning                                                                                                  |
| 31.12.2021     | - 4060 MW  | DE     | Nuclear               | Decommissioning Brokdorf, Grohnde,<br>Gundremmingen C                                                            |
| 31.12.2022     | - 4040 MW  | DE     | Nuclear               | Decommissioning Isar 2, Emsland,<br>Neckarwestheim 2                                                             |
| By end of 2022 | - 7000 MW  | DE     | Coal commission       | German Coal Commission proposes 7 GW additional reduction of lignite/hard coal                                   |

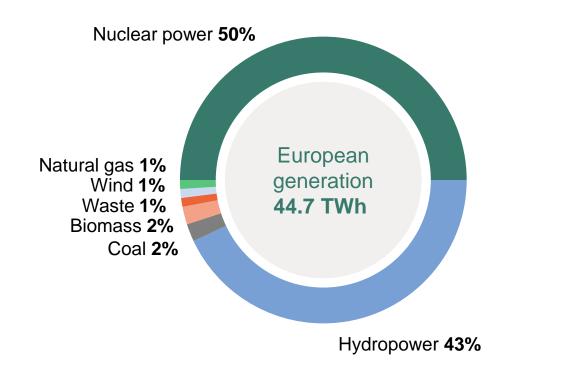



#### Fortum's evolution and historical strategic route

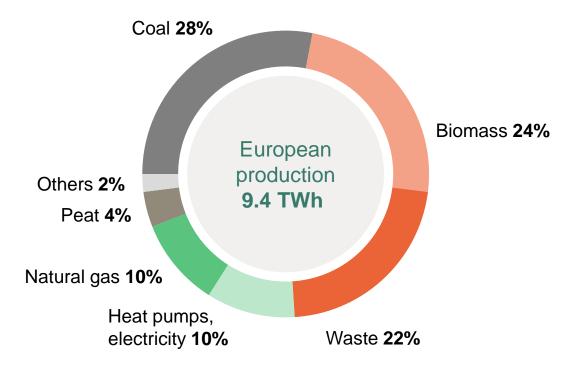




### Fortum's power and heat production by source




Note: Fortum's power generation capacity 13,724 MW and heat production capacity 15,009 MW




## Fortum's European power and heat production by source

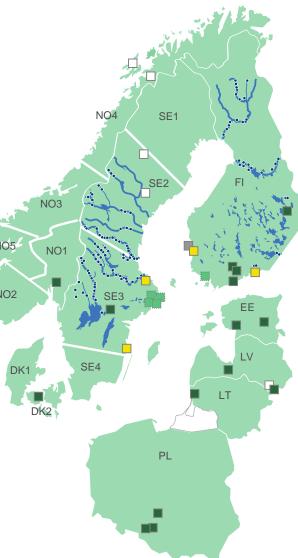
Fortum's European power generation in 2018



Fortum's heat European production in 2018



**e**fortum


Note: Fortum's European power generation capacity 8,811 MW and heat production capacity 4,780 MW  $\,$ 

## Fortum's Nordic, Baltic and Polish generation capacity

#### **GENERATION CAPACITY** MW

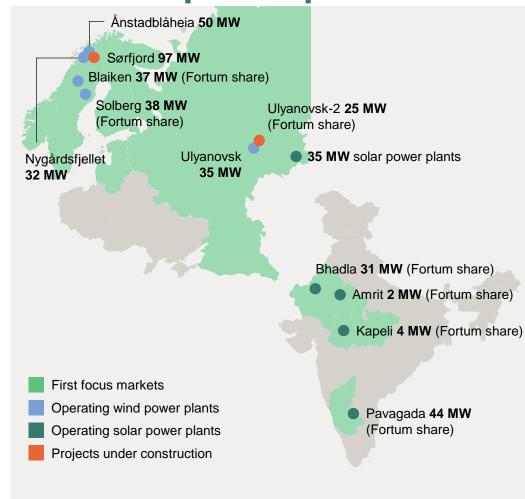
| Hydro                                         | 4,672 |
|-----------------------------------------------|-------|
| Nuclear                                       | 2,819 |
| CHP                                           | 785   |
| Other thermal                                 | 376   |
| □ Wind                                        | 159   |
| Nordic, Baltic and Polish generation capacity | 8,811 |
| Figures 31 December 2018                      |       |

Associated companies' plants (not included in the MWs) Stockholm Exergi (Former Fortum Värme), Stockholm; TSE, Naantali



| MW  |
|-----|
|     |
| 82  |
| 20  |
| 102 |
|     |

| SWEDEN              | MW    |
|---------------------|-------|
| Price areas         |       |
| SE2, Hydro          | 1,550 |
| SE2, Wind           | 75    |
| SE3, Hydro          | 1,574 |
| SE3, Nuclear        | 1,334 |
| SE3, CHP            | 9     |
| Generation capacity | 4,542 |
|                     |       |


| DENMARK, DK2             | MW |
|--------------------------|----|
| Generation capacity, CHP | 16 |

| FINLAND             | MW    |
|---------------------|-------|
| Hydro               | 1,548 |
| Nuclear             | 1,485 |
| CHP                 | 451   |
| Other thermal       | 376   |
| Generation capacity | 3,860 |

| BALTICS AND<br>POLAND                                | MW                    |
|------------------------------------------------------|-----------------------|
| Generation capacity,                                 | CHP                   |
| in Estonia<br>in Latvia<br>in Lithuania<br>in Poland | 49<br>34<br>20<br>186 |
| in Latvia, Wind                                      | 2                     |



#### Fortum is growing towards gigawatt scale target in solar and wind power production PORTFOLIO TECHNOLOGY STATUS CAPACITY FORTUM



| PORTFOLIO      | TECHNOLOGY | STATUS             | CAPACITY<br>MW | FORTUM<br>SHARE, MW | SUPPLY STARTS/<br>STARTED |
|----------------|------------|--------------------|----------------|---------------------|---------------------------|
| FINLAND        |            |                    | 90             | 90                  |                           |
| Kalax          | Wind       | Under development  | 90             | 90                  |                           |
| NORWAY         |            |                    | 179            | 179                 |                           |
| Nygårdsfjellet | Wind       | Operational        | 32             | 32                  | 2006 and 2011             |
| Ånstadblåheia  | Wind       | Operational        | 50             | 50                  | 2018                      |
| Sørfjord       | Wind       | Under construction | 97             | 97                  | Q4 2019                   |
| SWEDEN         |            |                    | 323            | 75                  |                           |
| Blaiken        | Wind       | Operational        | 248            | 37 (15%)            | 2017*                     |
| Solberg        | Wind       | Operational        | 76             | 38 (50%)            | 2018                      |
| RUSSIA         |            |                    | 2,003          | 1,092               |                           |
| Bugulchansk    | Solar      | Operational        | 15             | 15                  | 2016-2017                 |
| Pleshanovsk    | Solar      | Operational        | 10             | 10                  | 2017                      |
| Grachevsk      | Solar      | Operational        | 10             | 10                  | 2017                      |
|                | Solar      | Under development  | 110            | 110                 | 2021-2022                 |
| Ulyanovsk      | Wind       | Operational        | 35             | 35                  | 2018                      |
| Ulyanovsk 2    | Wind       | Operational        | 50             | 25 (50%)            | 1.1.2019                  |
| Rusnano JV     | Wind       | Under construction | 300            | 150 (50%)           | H1 2020                   |
| Rusnano JV     | Wind       | Under development  | 1,473          | 737 (50%)           | 2018-2023                 |
| INDIA          |            |                    | 685            | 581                 |                           |
| Amrit          | Solar      | Operational        | 5              | 2 (44%)             | 2012                      |
| Kapeli         | Solar      | Operational        | 10             | 4 (44%)             | 2014                      |
| Bhadla         | Solar      | Operational        | 70             | 31 (44%)            | 2017                      |
| Pavagada       | Solar      | Operational        | 100            | 44 (44%)            | 2017                      |
| Pavagada 2     | Solar      | Under construction | 250            | 250                 | Q3 2019                   |
| Rajasthan      | Solar      | Under construction | 250            | 250                 | Q4 2020                   |
| TOTAL          |            |                    | 3,281          | 2,017               |                           |
|                |            | Under development  | 1,673          | 937                 |                           |
|                |            | Under construction | 897            | 747                 |                           |
|                |            | Operational        | 711            | 333                 |                           |

48 \*) Blaiken last stage IV inaugurated in 2017. NOTE: Table numbers not accounting; tells the size of renewables projects. All not consolidated to Fortum capacities. All figures in MW and rounded to nearest megawatt. Additionally, target to invest 200 – 400 million euros in India solar and create partnership for operating assets. Under construction includes investment decisions made



#### Fortum's nuclear fleet

|                                                   | LOVIISA                                                    | OLKILUOTO                                                                                   | OSKARSHAMN                                                                | FORSMARK                                                                  |
|---------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Commercial operation started                      | Unit 1: 1977<br>Unit 2: 1981                               | Unit 1: 1978<br>Unit 2: 1980<br>Unit 3: (Under construction)                                | Unit 1: 1972*<br>Unit 2: 1974*<br>Unit 3: 1985                            | Unit 1: 1980<br>Unit 2: 1981<br>Unit 3: 1985                              |
| Generation Capacity                               | Unit 1: 507 MW<br>Unit 2: 507 MW<br><b>Total: 1,014 MW</b> | Unit 1: 890 MW<br>Unit 2: 890 MW<br>(Unit 3: 1,600 MW)<br><b>Total: 1,780 MW (3,380 MW)</b> | Unit 1: 473 MW*<br>Unit 2: 638 MW*<br>Unit 3: 1,400 MW<br>Total: 1,400 MW | Unit 1: 984 MW<br>Unit 2: 1,116 MW<br>Unit 3: 1,159 MW<br>Total: 3,259 MW |
| Fortum's share                                    | 100% 1,014 MW                                              | 27% 473 MW                                                                                  | 43% 602 MW                                                                | 22% 724 MW                                                                |
| Yearly production<br>Fortum's share of production | 8 TWh<br>8 TWh                                             | 14 TWh<br>4 TWh                                                                             | 11 TWh<br>5 TWh                                                           | 25 TWh<br>6 TWh                                                           |
| Share of Fortum's Nordic production               | 19%                                                        | 9%                                                                                          | 11%                                                                       | 13%                                                                       |
| Majority owner<br>Fortum's share                  | Fortum                                                     | Pohjolan Voima<br>26.6%                                                                     | Uniper<br>43.4%                                                           | Vattenfall<br>22.2%                                                       |
| Operated by                                       | Fortum                                                     | Teollisuuden Voima (TVO)                                                                    | OKG Aktiebolag                                                            | Forsmarks Kraftgrupp                                                      |

\*Out of operation; on decommissioning phase

#### RESPONSIBILITIES

Loviisa: Fortum is the owner, licensee and operator with all the responsibilities specified in the Nuclear Energy Act, Nuclear Liability Act, and other relevant nuclear legislation

Other units: Fortum is solely an owner with none of the responsibilities assigned to the licensee in the nuclear legislation. Other responsibilities are specified in the Companies Act and the Articles of Association and are mostly financial.



## Fortum's nuclear power in the Nordics

| LOAD<br>FACTOR (%) | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Oskarshamn 1*      | 80   | 51   | 63   | 85   | 68   | 77   | 72   | 1    | 12   | 74   | 60   | 81   | 82   | 0    |
| Oskarshamn 2*      | 90   | 78   | 76   | 86   | 75   | 90   | 77   | 81   | 33   | 0    | 0    | 0    | 0    | 0    |
| Oskarshamn 3       | 85   | 95   | 88   | 70   | 17   | 31   | 68   | 69   | 77   | 75   | 79   | 83   | 77   | 87   |
| Forsmark 1         | 85   | 76   | 81   | 88   | 88   | 93   | 79   | 88   | 87   | 94   | 79   | 95   | 88   | 94   |
| Forsmark 2         | 94   | 72   | 85   | 79   | 64   | 38   | 94   | 82   | 89   | 89   | 91   | 75   | 82   | 87   |
| Forsmark 3         | 95   | 92   | 88   | 69   | 86   | 81   | 85   | 93   | 88   | 83   | 58   | 82   | 86   | 81   |
| Loviisa 1          | 95   | 93   | 94   | 86   | 96   | 93   | 94   | 84   | 92   | 92   | 93   | 88   | 93   | 91   |
| Loviisa 2          | 95   | 88   | 96   | 93   | 95   | 89   | 94   | 91   | 93   | 89   | 92   | 93   | 93   | 85   |
| Olkiluoto 1        | 98   | 94   | 97   | 94   | 97   | 92   | 95   | 90   | 97   | 94   | 96   | 91   | 93   | 87   |
| Olkiluoto 2        | 94   | 97   | 94   | 97   | 95   | 95   | 91   | 96   | 93   | 97   | 89   | 94   | 81   | 94   |



Source: Fortum

\*) Out of operation; on decommissioning phase

#### Finnish units world class in availability

Overview of production and consumption: www.fortum.com/investors - energy related links



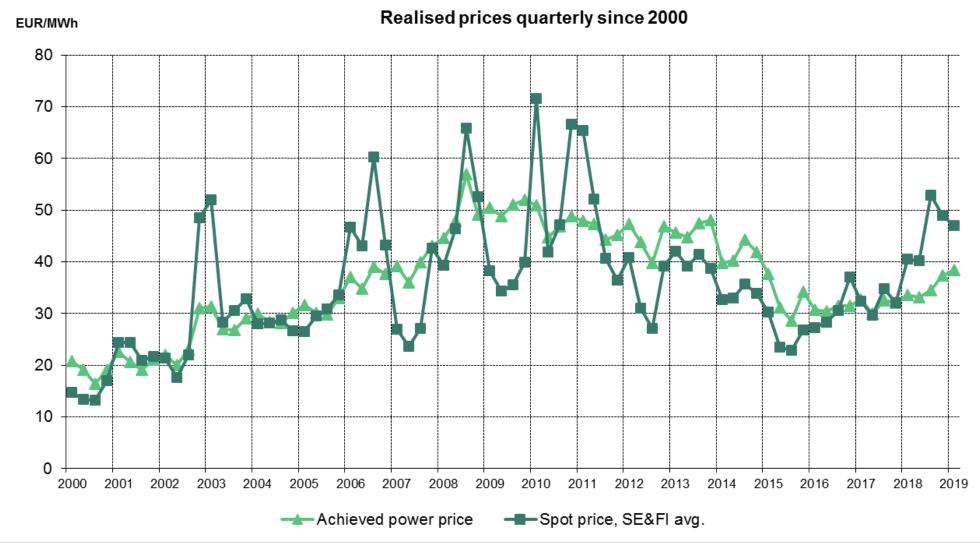
#### Thermal power generation capacity in Russia on 31 Dec 2018

| YEAR   | SUPPLY<br>STARTS | POWER<br>PLANT    | FUEL<br>TYPE | CCS<br>CAPACITY | CSA<br>CAPACITY | PRODUCTION<br>TYPE | TOTAL<br>CAPACITY |
|--------|------------------|-------------------|--------------|-----------------|-----------------|--------------------|-------------------|
| < 2011 |                  | Tyumen CHP-2      | Gas          | 755             |                 | CHP/Condensing     | 755               |
|        |                  | Chelyabinsk CHP-2 | Gas, coal    | 320             |                 | CHP/Condensing     | 320               |
|        |                  | Argayash CHP      | Gas, coal    | 256             |                 | CHP/Condensing     | 256               |
|        |                  | Chelyabinsk CHP-1 | Gas, coal    | 134             |                 | CHP/Condensing     | 134               |
| 2011   | Feb/2011         | Tyumen CHP-1      | Gas          | 472             | 210             | CHP/Condensing     | 682               |
|        | Jun/2011         | Chelyabinsk CHP-3 | Gas          | 360             | 233             | CHP/Condensing     | 593               |
| 2013   | Apr/2013         | Nyagan 1 GRES     | Gas          |                 | 453             | Condensing         | 453               |
|        | Dec/2013         | Nyagan 2 GRES     | Gas          |                 | 453             | Condensing         | 453               |
| 2015   | Jan/2015         | Nyagan 3 GRES     | Gas          |                 | 455             | Condensing         | 455               |
|        | Dec/2015         | Chelyabinsk GRES  | Gas          |                 | 247             | CHP/Condensing     | 247               |
| 2016   | Mar/2016         | Chelyabinsk GRES  | Gas          |                 | 248             | CHP/Condensing     | 248               |
| 2017   | Dec/2017         | Chelyabinsk GRES  | Gas          | 248             |                 | CHP/CCGT           | 248               |
|        |                  |                   |              | 2,093 MW        | 2,086 MW        |                    | 4,179 MW          |



Tobolsk power plant was sold in Q1/2016

### Day ahead wholesale market prices in Russia


#### Key electricity, capacity and gas prices in the PAO Fortum area

|                                                                    | l/19  | I/18  | 2018  | LTM   |
|--------------------------------------------------------------------|-------|-------|-------|-------|
| Electricity spot price (market price), Urals hub, RUB/MWh          | 1,128 | 1,011 | 1,043 | 1,072 |
| Average regulated gas price, Urals region, RUB 1000 m <sup>3</sup> | 3,883 | 3,755 | 3,801 | 3,833 |
| Average capacity price for CCS, tRUB/MW/month                      | 162   | 158   | 148   | 149   |
| Average capacity price for CSA, tRUB/MW/month                      | 1,196 | 1,147 | 1,075 | 1,087 |
| Average capacity price, tRUB/MW/month                              | 678   | 661   | 609   | 614   |
| Achieved power price for Fortum in Russia, RUB/MWh                 | 2,002 | 1,872 | 1,888 | 1,924 |
| Achieved power price for Fortum in Russia, EUR/MWh                 | 26.4  | 26.8  | 25.6  | 25.5  |





# Hedging improves stability and predictability – principles based on risk mitigation





## Capital returns: 2018 EUR 1.10 per share ~ EUR 1 billion

Fortum's target is to pay a stable, sustainable, and over time increasing dividend of 50-80% of earnings per share excluding one-off items

## Fortum's dividend policy is based on the following preconditions:

- The dividend policy ensures that shareholders receive a fair remuneration for their entrusted capital, supported by the company's long-term strategy that aims at increasing earnings per share and thereby the dividend.
- When proposing the dividend, the Board of Directors looks at a range of factors, including the macro environment, balance sheet strength as well as future investment plans.

#### Since 1998 Fortum has paid dividends totaling EUR 15.6 billion

#### Five year history of dividend per share





For more information, please visit www.fortum.com/investors

#### **Fortum Investor Relations and Financial Communications**

Next events: Q2/2019 results on 19 July 2019 Q3/2019 results on 24 October 2019

To subscribe Fortum's releases, please fill out the subscribtion form on our website https://www.fortum.com/about-us/media/media-room/subscribe-press-releases

| Manager                                          |                                                 |                                                   | <b>D</b> <sup>1</sup> <b>I I I I</b>        |
|--------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------|
| Manager                                          | Manager                                         | IR Specialist                                     | Pia Lilja<br>Executive Assistant            |
| +358 (0)10 453 6150<br>rauno.tiihonen@fortum.com | +358 (0)44 518 1518<br>mans.holmberg@fortum.com | +358 (0)40 643 3317<br>pirjo.liflander@fortum.com | +358 (0)50 553 5529<br>pia.lilja@fortum.com |
|                                                  |                                                 |                                                   |                                             |

Follow us on:







www.youtube.com/user/fortum



Fortum ForEnergy blog at fortumforenergyblog.wordpress.com

